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Section 1

INTRODUCTION ¢

Near an interface between dissimilar materials
of a structure irradiated by x-rays or y-rays, the
local absorbed radiation dose in a material differs
from the equilibrium dose which occurs in a bulk
region of the material. The difference in dose is
produced through energy transport by the electron flux
driven in the materials by the photon radiation.

The nonequilibrium dose occurs in the neighborhood

of the interface, in the region bounded by the range
of the most energetic of these electrons. For low
energy photons, in the spectral range of several keV
to several hundred keV, the depth of the nonequilibrium
dose region is on the order to 1 to 100 uym in a low-Z
(atomic number) material. For high energy photons

in the spectral range of several MeV, the depth of the
nonequilibrium dose region is on the order of 0.1 to

1 cm in a low-Z material. For the low energy photons,
the pneak dose in a low-7 material near a high-Z7
material interface can be as much as two orders of
magnitude greater than the equilibrium dose. For the
high energy photons, the peak dose can be a factor

of two greater than the equilibrium dose.

This phenomenon, known as dose enhancement
is of concern in nuclear radiation effects analysis
and testing. It is of particular concern in transient

radiation effects in electronics (TRE) and radiation




effects in cables (cable SGEMP). Over the past several

years we have been involved in research to obtain an
understanding of the dose enhancement phenomenon

and to develop methods for the prediction of dose
enhancement. The main objectives of this research
program have been three:

(1) develop a rigorous model for the calcu-
lation of dose enhancement,

(2) characterize the dose enhancement at
low-Z/high-Z interfaces over a broad
range of photon energies, and

(3) support the development of a user's
guide to provide the radiation effects
analyst with the means to predict dose
enhancement for arbitrary material
configuration and arbitrary x-ray
or y-ray spectrum.

The first objective was met through the development,

documentation, and release of the POEM Monte Carlo g
computer code for the calculation of dose enhancement.1

The second objective was met through the compilation

and publication of the x-ray dose enhancement handbook.z

The third’objective is met through the publication of

this report.

In this report we provide three types of

input to the User's Guide to Dose Enhancement:

(1) Definition of dose enhancement. We
address the questions: Why does
dose enhancement occur? Under what
conditions does it occur? What is
the order of magnitude of the effect?

' W. L. Chadsey, "POEM," AFCRL Report TR-75-3034 (1975).

2 W. L. Chadsey, J. C. Garth, R. L. Sheppard, and
R. Murphy, "X-Ray Dose Enhancement,' RADC Report
TR-76-159 (1976).
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(2)

(3)

Description of the analysis techniques
available to the prediction of dose
enhancement. The techniques discussed
include a prescription for obtaining

an upper bound on the effect, a semi-
empirical method for estimating the
effect, and Monte Carlo computer codes
for calculating the effect. This descrip-
tion includes discussion of the limita-
tions of the various techniques and the
relative advantages and disadvantages
of each.

Further characterization of the dose
enhancement near high-7Z/low-~-Z interfaces.
(a) The previously published report,
"X-Ray Dose Tnhancement,"? provided
description of the dose enhancement in
silicon near gold and in polyethylene
near gold for monochromatic x-ray
sources in the range 10 keV to 2 MeV.
Herein we describe the dose enhancement
in silicon near gold for continuous
X-ray spectra, in particular, for
filtered, black body x-ray spectra,

with temperatures ranging from 2 keV
through 15 keV. (b) The calculations
of dose enhancement published in the
previous report were for '"thick'" gold
layers, i.e. thicker than the maximum
electron range. Herein we report
calculations for thin gold layers.

(¢) The dose enhancement is calculated
for several additional interface configu-
rations, including aluminum/polyethylene,
copner polyethylene, and silver/
polvethylene, which when combined with
the vreviously reported results for
gold/polyethylene provide a cood descrip-
tion of dose enhancement in a low-Z
material as function of the atomic

number of the interfacino high-7
material.




Section 2

PREDICTION OF DOSE ENHANCEMENT

2.1 DFFINITION

Dose is defined as the energy imparted to
matter per unit mass of matter. X-rays and y-rays
impart energy to matter primarily through energy
transfer to swift electrons — photoelectrons, Auger
electrons, Compton electrons, and electron/positron
pairs — which then impart energy through collisions.

In a region of a homogeneous material farther from

any boundary than the range of the most penetrating

of these electrons, electron equilibrium occurs:

the energy transported into a region by electrons is
equal in the mean to the energy transported out by

the electrons. 1In this case the dose is equal to

the energy per unit mass locally removed from the photon
radiation field — the kerma or equilibrium dose.

Given the description of the photon fluence and spectrum,
prediction of the equilibrium dose is straightforward
using readily available tabulations or formulations of

the photon energy absorbtion coefficient.3

Near an interface between dissimilar materials,
or near a vacuum interface, electron equilibrium fails

because of the differences in the electron production

For example, E. Storm and H. I. Israel, "Photon Cross
Sections from 0.001 to 100 MeV for Elements 1 through
100," LASL Report LA-3753 (1967).




and electron transport properties of the adjacent media:
the energy transported into a local region by electrons
is not equal to the energy transported out; thus the
local dose differs from the equilibrium dose. The
region of electron disequilibrium near an interface

is known as the transition zone. The prediction

of the dose within the transition zone requires treat-
ment of the local electron transport. In the following
paragraphs we discuss techniques for predicting the

transition zone dose.

2.2 PROBLEM IDENTIFICATION - WORST CASE ESTIMATION

Dose enhancement occurs in the region adjacent
to a material interface bounded by the range of the
most energetic of the electrons liberated by the
photon flux. The maximum electron energy is bounded
by the maximum photon energy; the width of the transi-
tion zone is therefore bounded by the range of an electron
with kKkinetic energy equal to the maximum photon energy.
(For reference, electron range versus energy is shown
in Figure 1 for silicon.) If one is concerned with the
effects of radiation dose, or with the measurement of
radiation dose, in a region which lies within a transi-
tion zone, as thus defined, the dose enhancement effect

must be considered.

Dose enhancement arises through the failure
of electron equilibrium near an interface. Equilibrium
fails through two effects: electron emission across
the interface and electron reflection at the interface.
Electron emission across the interface produces
dose enhancement if the electron emission yield of

one material differs from that of the adjacent material.

10
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Electron reflection at the interface produces dose
enhancement if the electron reflection coefficient of
one material differs from that of the adjacent material.
Since both the electron emission yield and the electron
reflection coefficient are functions of material atomic
number, dose enhancement is expected if the adjacent
materials at an interface differ in characteristic

atomic number.

Having defined the conditions under which
dose enhancement occurs and determined an upper bound
on the width of the transition zone in which dose
enhancement occurs, we now determine the upper bound
on the magnitude of the dose enhancement. We consider
each of the two effects producing dose enhancement:

electron emission and electron reflection.

Electron emission at a material interface
produces strong dose enhancement if the electron
emission yields of the interfacing materials differ

strongly. Strong differences in electron yield occur

at photon energies for which the photon interaction
cross section is dominated by the photoelectric
process. For mid-Z to high-Z materials this

occurs for photon energies less then several hundred
keV. (A thorough compendium of electrom emission
yields appears in Reference 4.) The higher atomic
number material produces the higher electron emission
yield at these photon energies; thus at a high-Z/low-2

: interface some of the energy imparted to swift electrons

in the high-Z material is transported into the low-2

“ W. L. Chadsey and C. W. Wilson, '"X-Ray Photoemission,"
HDL Report CR-75-138-1 (1975).

12




material producing dose enhancement in the low-Z

material. The electron transport across the interface

is thus an averaging process, i.e. the energy deposition

is reduced in the high-Z material and increased in
the low-Z material. A maximum upper bound estimate
for the dose enhancement in the low-Z material (the
ratio of the transition zone dose to the equilibrium
dose) is therefore the ratio of the equilibrium

dose in the high-Z material to the equilibrium'dose

in the low-Z material.

At higher photon energies, greater than
several hundred keV in mid to high-Z materials,
the photon interaction cross section is dominated by
Compton electron production so that differences in
electron emission yields between different atomic
number materials are small. Electron emission across
a material interface produces little dose enhancement;
the ratio of equilibrium doses between interfacing
materials is near unity. Nevertheless, significant
dose enhancement can occur at these photon energies
due to the electron reflection at the interface. At
a high-Z/low-Z material interface the high-7Z material
has a higher reflection coefficient than the low-2Z
material, such that electrons are preferentially
backscattered into the low-Z material producing dose
enhancement in the low-Z material. At these photon
energies the electron flux is strongly directed in
the direction of the photon flux; since the dose
enhancement occurs through backscatter from the high-Z
material, the enhancement occurs only when the photon
flux is incident on the interface through the low-Z

material. (When the photon flux is incident through

13
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the high-Z material, a small reduction in dose occurs

in the transition zone of the low-Z material.)

Determination of an upper bound electron
reflection-produced dose enhancement is straightforward.
The worst case would be obtained for the conditions: .
photon flux is incident on the interface through the low-Z
material; the electron flux is entirely directed in
the photon direction, and the reflection coefficient
of the high-7Z material is unity. In such case the

interface dose would be double the equilibrium dose.

We now summarize the procedure for obtain-
ing an upper bound estimate of the dose enhancement.
Consider an interface between two materials. Let
material 1 be the higher-Z material and material 2
be the lower-Z material. We are concerned with dose
enhancement in the lower-Z material. To determine
whether the region of concern lies in the transition
zone we obtain an upper bound on the width w of

the transition zone:

w o < re(hvmax) (1)

where re(hvm x) is the range of an electron with energy ‘

a
equal to the maximum photon energy.

For low energy photons (hv < 500 keV) the
Ay

Ml o o oo

upper bound on the relative dose Dr (ratio of interface
dose to equilibrium dose in material 2) is

»

D. < X (2)
* o
Ky

! 14




where K1 is the kerma (equilibrium dose) in material 1
and K2 is the kerma in material 2. For high energy
photons (hv > 500 keV) the upper bound on the relative
dose is

D <2 (3)

(When obtaining an upper bound estimate for the dose
enhancement in a structure irradiated by high energy
photons, one must be careful to take into account the
lower energy photons produced through scattering in
materials positioned between the source and the inter-
face. The low energy, scattered photons can produce
significant dose enhancement at the interface as shown,

for example, in Reference 5.)

If this bounding procedure indicates (1) the
region of concern lies within the transition zone, and
(2) a dose enhancement as great as the upper bound esti-
mate would constitute a problem, then more careful
analysis of the dose enhancement is required using
one or more of the techniques discussed in the follow-

ing section.

2.3 PREDICTION TECHNIQUES

A number of techniques have been developed
for the prediction of dose enhancement at x-ray and
y-ray irradiated interfaces: Monte Carlo computer

codes, analytical approximations, and empirical

> W. L. Chadsey, '"Monte Carlo Analysis of X-Ray and
vy-Ray Transition Zone Dose and Photo-Compton Current,"
"AFCRL Report TR-73-0572 (1973).

15
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approximations. These techniques are discussed in the
following paragraphs.

2.3.1. Compilations of Computational Data

The most straightforward method of predicting
dose enhancement is to refer to one of several compila-
tions of computational data. These data, appearing
for example in references 2, 4, 5, and 6 and in Section 3
of this report, have been calculated using Monte Carlo
codes, in particular the POEM1 code. While there
is high confidence in these calculations, the number of
cases treated in these compilations is necessarily limited.

The report, '"X-Ray Dose Enhancement,z” presents

calculations of the dose enhancement in silicon near
gold and in polyethylene near gold for a set of mono-
chromatic photon spectra ranging from 10 keV through

2 MeV. These calculations were performed for the case

! W. L. Chadsey, "POEM," AFCRL Report TR-75-3034 (1975).

2 W. L. Chadsey, J. C. Garth, R. L. Sheppard, and
R. Murphy, "X-Ray Dose Enhancement,'" RADC Report
TR-76-159 (1976).

For example, E. Storm and H. I. Israel, "Photon Cross
Sections from 0.001 to 100 MeV for Elements 1 through
100,'" LASL Report LA-3753 (1967).

“* W. L. Chadsey and C. W. Wilson, '"X-Ray Photoemission,"
HDL Report CR-75-138-1 (1975).

> W. L. Chadsey, "Monte Carlo Analysis of X-Ray and
vy-Ray Transition Zone Dose and Photo-Compton Current,6"
AFCRL Report TR-73-0572 (1973).

® W. L. Chadsey, B. L. Beers, V. W. Pine, D. J. Strickland
and C. W. Wilson, '"X-Ray Photoemission; X-Ray Dose
Enhancement' RADC Report TR-77-253 (1977).

16
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of equilibrium thickness of gold, i.e. gold layer thick-

ness equal to the maximum electron range in gold. For
gold thicknesses greater than or equal to the equilibrium
thickness, the results presented are independent of
thickness. For thinner layers of gold, which produce
less dose enhancement (the equilibrium thickness provides
the worst case), Monte Carlo calculations are required

to accurately predict the dose enhancement. (Some
results for thin gold layers are presented in Section 3

of this report.)

The calculations presented in "X-Ray Dose
Enhancement'" are limited to the case of photon incidence
normal to the interface. For low energy photons,
hv i 400 keV, the results are presented for normal
incidence through the gold — which case produces the
maximum dose enhancement. For oblique photon incidence,
the dose enhancement scales to good approximation as
the vacuum electron emission yield from gold. (The

electron emission yield from gold versus photon angle of

incidence is presented in the report, '"X-Ray Photoemission;"4

as shown therein the yield, and therefore the dose
enhancement, are only weakly dependent on the photon
angle of incidence.) For high photon energies,

hv ; 400 keV, the results are presented for both

photon incidence through the low-7 material, which case
produces the maximum dose enhancement, and photon
incidence through the gold, which case »nroduces the

least dose enhancement (or the maximum dose reduction.)

* W. L. Chadsey and C. W. Wilson, 'X-Ray Photoemission,"
HDL Report CR-75-138-1 (1975).

17

wdoret X o W AN = S TR USRI MRS N

B i e e e b e e e e L




For these photon energies the dose enhancement is

strongly dependent on the photon angle of incidence;
therefore, Monte Carlo calculations are required to
accurately predict the dose enhancement for the case of
oblique photon incidence. (Remember, however, that the

worst-case enhancement is less than a factor of two.)

In Section 3 of this report we present
additional computational data. Included in this
compilation are results for

) continuous photon spnectra

(filtered, black body x-ray spectra)
thin gold layers
additional interface configurations —

copper/silicon
aluminum/polyethylene
copper/polyethylene
silver/polyethylene

2.3.2 Empirical Approximation

[ Burke and Garth7 have developed an empirical
algorithm for the prediction of the x-ray dose enhancement

at an interface. Herein we review the Burke and Garth

model, modify the model to include the electron reflection

contribution to the interface dose, and further simplify

the model to obtain a very simple, but reasonably accurate {

model for predicting the interface dose. {

Consider a planar interface between two materials:

let material 1 be the high-Z material and material 2 be

7 E. A. Burke and J. C. Garth, IEEE Trans. Nuc. Sci.,
NS-23, No. 6, 1838 (1976).
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the low-Z material. We want to predict the dose enhance-

ment in the low-Z material. We consider two contributions

to the dose enhancement: that by electrons arising in

e

material 1 (the emission contribution) and that by electrons
arising in material 2 (the reflection contribution). Let
ui(hv) be the photon interaction cross section in material 1
for producing n, electrons of initial energy Ei' The

index 1 represents the interactions: K-photoelectric,
L-photoelectric, M-photoelectric,..., K-Auger, L-Auger,
M-Auger,... . Let uenl(hv) and uenz(hv) be the equilibrium
energy absorption cross-sections (kerma) in materials 1

and 2, respectively. Let Rl(Ei) and RZ(Ei) be the electron
ranges (csda) in materials 1 and 2, respectively; and let

g
5
|
|
%
!
|

84 and g, be the electron reflection coefficients (diffuse
backscatter) in materials 1 and 2, respectively. These

symbol definitions and their units are summarized in Table 1.

We follow the development by Burke to obtain an
expression for the relative dose (ratio of interface dose
to equilibrium dose) in material 2 due to electron emission
from material 1. Assume that the electron fluence in the
bulk regions of materials 1 and 2 is isotropic and that the

reflection coefficients are independent of energy; then the

interface fluence of electrons arising in material 1, per
unit photon fluence is
(1-84)(1+8,) ] , ;
PP R 1’ 2’ 2 uju; (hv)R,(E,) (1)
1 < 1—b182 i
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The interface dose D1 due to electrons arising in material 1

is the product of the differential electron fluence and the ‘3
electron stopping power, integrated over electron energy

d¢1
D1 = a5 S (E)dE (5)

Using equations (4) and (5) we obtain the approximation

- e ¢
e B S = o T g, 1 (P0R e R e

The relative dose due to electron emission from material 1
is then

Dy

rl uenzhv

1 (1- 81)(1+8 ) U, (hv) Rl(Ei) Ei

= 2: n. 3
2 (1—8162 1 1u 2(h\)) Rz(Ei) hv

(7)

This is the same expression as obtained by Burke. We now

further simplify this expression. Over the energy range of
concern here, the ratio of electron ranges Rl(Ei)/Rz(Ei)

is approximately independent of energy. Let Rl/R2 be

the effective ratio; then we may rewrite equation (7):

.U, (hv)E,
L (1-6,)(1+8,) R &1 (hVIE;

Ba™ 3 s, (8)
r1 2 7 (1-B{By) Ry u  o(hv)hv

21
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The . expression z: niui(hv)Ei in equation (8)
is the total energy impartéd to electrons in material 1 per
unit photon fluence. By definition this is the kerma, the
equilibrium dose per unit fluence, which is the product of

the energy absorption cross section and the photon energy

%;niui(hv)Ei = Hgpp(BV)hv (10)

Substituting (10) into equation (9) we obtain

(1-8,)(1+B5) El M
1-8

enl(hv)
182 R2 “enz(hv)

(11)

i A
Dy = 3

This is a very simple expression: the ratio of the equili-
brium doses modified by the ratio of electron ranges and

a function of the reflection coefficients.

Now consider the contribution to the interface dose
due to electrons arising in material 2. We follow the same
procedure as in equations (4) through (11), but for energy
deposition in material 2 for electrons arising in material 2.
We obtain an expression similar to equation (11), but with the
reflection coefficients 81 and 82 interchanged (the electrons
are starting out on the opposite side of the interface)
and with Rl end L
(the electrons are starting in material 2 and depositing energy

respectively

and u replaced by R2 and u

in material 2). The expression for this contribution to the

relative dose is thus simply

(1+81)(1—82) (12)
1-8485

|
Do = 3
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Summing the two contributions, equations (10)

and (11), we obtain the total relative dose

Rl uenl(hv)

D = f(Bgy,B1)+tf(By,By) 5= —F—= (13)
r 2 1= =9 R2 uenz(hv)
where the function f is defined
(1—31)(1+82)

For evaluating equation (13) to obtain the interface
dose, the energy absorption cross sections are readily obtain-
able from photon cross section computations, for example,
reference 2. The ratio of electron ranges can be obtained
from a range tabulation, for example, reference 8. The
electron reflection coefficients are available in data
compilations, for example, reference 9, or can be obtained

by using Burke's fitlo to Darlington's data:9

8 = 0.47529°177 _ o.40, for 4<z<92 (15)

where 7Z is the material atomic number,

2 W. L. Chadsey, J. C. Garth, R. L. Sheppard, and R. Murphy,
"X-Ray Dose Enhancement,'" RADC Report TR-76-159 (1976).

® M. J. Berger and S. M. Seltzer, "Studies in Penetration of
Charged Particles in Matter," National Academy of Sciences -
National Research Council Publ. No. 1133.

" E. H. Darlington, J. Phys. D: Appl. Phys. 8, 85 (1975),
' E. A. Burke, IEEE Trans. Nuc. Sci., NS-24, No. 6, 2505 (1977).

23

e > e




e

—-—

To test this simple empirical model we made compari-
sons to the POEM code calculations of dose enhancement at
a gold/silicon interface published in reference 2. For
these comparisons we used BAu = 0.50, BSi = 0.18, and
RAu/RSi = 2.0. We obtained the results shown in Figure 2.
The agreement between the empirical model and the Monte ’
Carlo calculations is quite reasonable: above 100 keV
and below 20 keV the agreement is to within 20%, approximately
within the standard deviation of the Monte Carlo calculation;
between 20 keV and 100 keV there is some disagreement, but
the maximum discrepancy is less than 50 percent. Shown in
Figure 3 is a comparison of the predictions of the simple
model with POEM code calculations of the dose enhancement
at a copper/polyethylene interface. Here the agreement is
remarkably good, everywhere to within a few percent. This
simple empirical model, we conclude, is quite adequate for

estimating the interface dose.

The empirical model thus far developed predicts
only the dose immediately at the interface. It is also of
interest, however, to predict the dose as a function of
distance from the interface. This can be done with the
empirical model provided that an additional simplifying
approximation is made, that the dose profile produced by each
of the electron source types (K-photoelectron, L-photoelectron,
K-Auger electron, and so on) can be represented by a simple
exponential of the form aexp (-bx). Using this approximation
we obtain an expression for the relative dose profile in

material 2 near the interface with material 1

a -b.x
D.(x) = B, p aje 1 (16)
i

2 W. L. Chadsey, J. C. Garth, R. L. Sheppard, and R. Murphy,
"X-Ray Dose Enhancement,' RADC Report TR-76-159 (1976).
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where Dro is the interface dose obtained from equation (13)

and a; is the fractional contribution to the equilibrium

i
dose in material 1 due to electrons produced in the i-th

electron production interaction:

n.u,(hv)E,
a. = sl = (17)
3 > n_u_ (hv)E,
3 J J J

The coefficient bi is given by the ratio of the interface

dose to the interface fluence; Burke and Garth obtain

1+
b, = 2% 5 R ED) e
2020 i
where m is the coefficient in the power function approxi-
mation to the csda electron range in material 1
B (E.) = EKE/™ (19)
R i
The coefficient m in equation (19) is a slowly varying
function of atomic number, m = 1.65 + 0.10, so we may to
good approximation express the coefficient bi by
) bl e | (20)
& N R,(E;)
1-62 205

Following Burke's procedure we use the empirical formula
for the normal electron reflection coefficient in evaluating

equation (20)
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0.186z°:318 _ o.25 (21)

g

rather than the diffuse reflection coefficient equation (15).
Note that equations (16, 17 and 20) are equivalent to the
expressions developed by Burke and Garth7 but are in a

simpler form.

The aj coefficients in equation (16) represent
the relative magnitudes of the source contributions to the
interface dose. Shown in Table 2 are expressions for the
aj coefficients. Shown in Table 3 are sample calculations
of the aj coefficients for electrons arising in gold for
several photon energies. Note that just above the K-absorption
edge, hv = 85 and 100 keV that strong contributions to
the interface dose arise from L-Auger and M-Auger electrons
as well as K-photoelectrons, L-photoelectrons, and K-Auger
electrons. Because of the short ranges of the low energy
L-Auger and M-Auger electrons (less than about 1 um in
silicon), they contribute to the dose only very near the
interface. Further from the interface the dose is dominated
by the contributions of the higher energy photoelectrons.
For photon energies much greater than the K-absorption edge,
the dose profile is dominated by K-photoelectron and

L-photoelectron contributions.

The exponential approximation to the dose profile
in equation (16) is not exXxtremely accurate (in fitting

Monte Carlo calculations of dose profiles we found it

7 E. A. Burke and J. C. Garth, IEEE Trans. Nuc. Sci., NS-23,
No. 6, 1838 (1976).
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necessary to use expressions of the form aenqa(bx+cx2+dx3)

to obtain accurate fitsz), but based on results obtained

by Burke and Garth7 and by Dellum and MacCallum11 it appears
that the model is quite adequate for estimating the dose
profile. As a check we compare the predictions of the simple
model with POEM Monte Carlo calculations of the relative

dose profile in silicon near gold for 100 keV photons in

Figure 4, the agreement is seen to be good.

The empirical model assumes an isotropic distribu-
tion for the electron fluence in the bulk regions of the

materials. This is a good approximation for photoelectrons

and Auger electrons, but a poor approximation for Compton
electrons. The model is thus limited to x-ray spectra for
which the photon interaction cross section is dominated by
the photoelectric effect; for high-Z/low-Z interfaces this
limits the model to photon energies hv < 400 keV. This is
the region in which the dose enhancement effect is greatest.
For photon energies about this energy, a Monte Carlo calcula-
tion is probably required to obtain an accurate prediction

of interface dose. Remember, though, that the maximum dose

enhancement in this energy range is less than a factor of two.

The empirical model assumes equilibrium thicknesses
for the high-Z and low-Z materials. The model is therefore
limited to material thicknesses less than the maximum electron

range; for thinner materials Monte Carlo calculations are

> W. L. Chadsey, J. C. Garth, R. L. Sheppard, and R. Murphy,
"X-Ray Dose Enhancement,'" RADC Report TR-76-159 (1976).

7 E. A. Burke and J. C. Garth, IEEE Trans. Nuc. Sci., NS-23,
No. 6, 1838 (1976).

' T, A. Dellin and C. J. MacCallum, IEEE Trans. Nuc. Sci.
NS-23, No. 6, 1844 (1976) .

’
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probably required. (In section 3 of this report we present

Monte Carlo results for thin materials.)

2.3.3 Analytical Approximation

Dellin and MacCallum11

have developed an analytical
approximation for the prediction of the dose profile at an
interface. The method is the extension of their earlier
analytical approximations to the bulk photo-Compton current
and vacuum emission current. A P1 approximation to the
Boltzman equation is solved to obtain the dose, energy
fluence and charge fluence at the material interface. The
dose profile is then calculated using the same exponential

approximation as used in the empirical model discussed above.

This analytical approximation method was developed
by Dellim and MacCallum into the QUICKE4 computer code.
Calculations were performed and comparisons made with POEM
and SANDYL Monte Carlo codes obtaining generally good
agreement. To our knowledge the QUICKE4 computer code has

not as yet been released to the community.

2.3.4 Monte Carlo Calculation

The most rigorous method of prediction of the dose
enhancement is calculation with a Monte Carlo electron trans-
port code. While Monte Carlo codes produce results subject
to statistical uncertainty and are expensive in terms of
computer time, the codes are exact from a physical stand-

point and are applicable to arbitrary geometric and material

"7, A. Dellin and C. J. MacCallum, IEEE Trans. Nuc. Sci.
NS-23, No. 6, 1844 (1976).
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configurations. In particular, the Monte Carlo codes are
applicable to the prediction of dose enhancement for cases
of thin layers, multiple layers, or multiple dimensional
configurations. Furthermore, the cost of a set of Monte
Carlo calculations is small compared with the cost of
developing an analytical prediction technique, and the Monte
Carlo predictions can be used with high confidence based

on extensive validation of the codes.

Monte Carlo codes calculate the transition zone
dose in a two step process: (1) The electron source
distribution in the neighborhood of the material interface
is calculated, generally using an analytical formulation —
the source distribution is comprised of photoelectrons,
Auger electrons, Compton electrons, and for high photon
energies electron-position pairs; (2) the electron trans-
port is calculated in the neighborhood of the interface to

obtain the energy deposition using a Monte Carlo formulation.

A number of available Monte Carlo electron trans-
port codes are applicable to the calculation of dose enhance-
ment. Most of these codes are decendents of the ETRAN

code developed by Berger and Seltzer.12 The two most

commonly used codes are POEM1 and SANDYL13.

POEM is a special purpose, fast running Monte

Carlo electron transport code with versions specifically

! W. L. Chadsey, '"POEM,'" AFCRL Report TR-75-3034 (1975).

12 M. J. Berger and S. M. Seltzer, "Electron and Photon
Transport Programs,' NBS Reports 9836-9837.

13 H. M. Colbert, '"SANDYL,'" Sandia Laboratories Report
SLL-74-0012 (1974).
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designed for the calculation of dose enhancement. There are
two versions for this puppose: One for the calculation of
the transition zone dose profile at a single planar inter-

} face between two materials; the other version calculates

the dose profile in a stack of up to 20 slabs of materials.
The materials may be any homogeneous material of a composi-
: tion of up to ten elements. The elements may be any of
5 those with atomic number Z = 1 through 83, 86, 90, 92 and
94. The photon spectrum can be (1) monochromatic, (2) black-
{ body spectrum, or (3) arbitrary spectrum defined over up
, ‘ to 120 photon energy groups. The photon spectral range of
A applicability of the code is approximately 5 keV through
2 meV. The lower limit is imposed by the 1 keV cutoff on
the electron transport. The upper limit is imposed by the
exclusion of pair production in the electron source calcula-
tion. The code assumes plane wave phcton irradiation.

The angle of incidence is arbitrary.

While the POEM code versions for the calculation
of dose enhancement are one-dimensional, i.e. they treat
slab geometry configurations, this limitation is generally
not serious. So long as the minimum radius of curvature of
the material inteface and the lateral dimensions of the
configurations are large compared with the maximum electron

range, then a configuration can be accurately represented

as one-dimensional in the transport calculation.

By developing versions of the POEM code specifi-
cally designed for the calculation of dose enhancement, it
was possible to obtain a high level of optimization and
incorporate several variance reduction techniques. Con-
sequently, POEM is a fast running Monte Carlo code. Our
experience shows POEM to be about a factor of 20 faster
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than general purpose Monte Carlo codes such as SANDYL.

A typical calculation using 10,000 electron histories to
obtain a 5 percent statistical error requires about 15‘CPU

seconds execution time on a CDC 7600 computer.

The POEM code calculations of dose enhancement
we believe to be accurate to within about 25 percent. This
is based on limited comparisons with experimental data for
dose enhancement5 and more extensive comparisons for

4

x-ray photoemission. Inter-code comparisons are also use-

ful here: Published comparisons of SANDYL calculations with

11

POEM calculations show agreement to within about 25 percent.

The POEM code is available through the DASIAC
code library (GE/TEMPO); in order to obtain the code written
approval must be obtained from the Defense Nuclear Agency
(DNA/RAEV). User's instructions for the POEM code are

published in reference 1.

In order to obtain speed of computation, generality
was necessarily sacrificed in developing the versions of
POEM for predicting dose enhancement. If a dose enhancement
problem requires a multidimensional calculation or predic-

tion for photon energies much greater than 2 MeV, then a

! W. L. Chadsey, "POEM," AFCRL Report TR-75-2034 (1975).

* W. L. Chadsey and C. W. Wilson, "X-Ray Photoemission,"
HDL Report CR-75-138-1 (1975).

® W. L. Chadsey, '"Monte Carlo Analysis of X-Ray and y-Ray
Transition Zone Dose and Photo-Compton Current,' AFCRL
Report TR-73-0572 (1973).

' 7, A. Dellim and C. J. MacCallu, IEEE Trans. Nuc. Sci.
NS-23, No. 6, 1844 (1976).
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more general purpose Monte Carlo transport ccde is required.
SANDYL is a general purpose code which is applicable to the

calculation of dose for arbitrary three-dimensional configura-
tions for photon energies from about 5 keV up through 10 GeV.
The SANDYL code is available through the Sandia Corporation.
User's instructions to the SANDYL cose are published in

2 Reference 13.

13 1, M. Colbert, ''SANDYL,'" Sandia Laboratories Report
SLL-74-0012 (1974).
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Section 3

MONTE CARLO CALCULATIONS OF
DOSE ENHANCEMENT

: 2
In a previous report on x-ray dose enhancement

we published results of Monte Carlo calculations of dose
profiles in silicon near gold and in polyethylene near

gold for photon energies in the range 10 keV to 2 meV.

The gold/silicon interface was selected because of its
occurance in electronic devices; the gold/polyethylene
interface was selected because it represents a practical
worst case. The calculations reported were limited to these
two interface configurations; they were also limited to the
cases of monochromatic photon spectra and thick gold layers.
There is of course interest in other cases; below we
investigate dose enhancement for other interface configura-

tions, continuous x-ray spectra, and thin gold layers.
3 DOSE ENHANCEMENT AT METAL/POLYETHYLENE INTERFACES

Previously we reported calculations of dose
enhancement in polyethylene (CH2, effective Z < 6) near
gold (Z = 79); this is a practical worst-case mismatch
in atomic number; we therefore expect a practical worst-case
dose enhancement for Au/CHz. A convenient set of calcula-

tions to investigate the dose enhancement effect on atomic

2 W. L. Chadsey, J. C. Garth, R. L. Sheppard, and
R. Murphy, '"X-Ray Dose Enhancement,'" RADC Report
TR-76-159 (1976).
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i

number are the interfaces A2(Z=B)/CH

Cu(Z=29)/CH2,
Ag(Z=47)/CH2, and Au/CHz. These configurations are also of

2)

interest with regards to the analysis of radiation effects
on cables. With respect to dose enhancement, polyethylene
is representative of a broad class of low-Z dielectrics
whereas the four metals represent aluminum, copper, and gold

conductors and silvered (or tinned) copper conductors.

Interface dose enhancement in polyethylene versus
photon energy is shown in Figure 5 for the four metals.
Shown in Figures 6 through 9 are representative dose

profiles for the four configurations.

3.2 DOSE ENHANCEMENT FOR CONTINUOUS X-RAY SPECTRA

The previously reported calculations were for
cases of monochromatic photon spectra; this, of course,
is the most convenient representation of spectra for
characterizing dose enhancement versus photon energy.
The radiation effects analyst, however, frequently represents
continuous x-ray spectra with the Planckian (blackbody)
distribution function. Shown in Figure 10 is the interface
dose enhancement in silicon near gold versus x-ray spectrum
blackbody temperature for the configuration shown. The
incident spectrum is attenuated through 20 mils (0.0508 cm)
of aluminum. The gold thickness is the equilibrium thick-
ness. Results are shown for both photon incidence normal
to the interface through the gold (the worst-case angle
of incidence) and photon incidence normal to the interface
through the silicon (the least worst-case angle of incidence).
Note that the worst-case dose enhancement varies by less than
a factor of two over the spectral temperature range 2 keV
to 15 keV; the interface dose enhancement is 10 } 50%.
Representative dose profiles are shown in Figure 11.
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3.3 DOSE ENHANCEMENT FOR THIN GOLD LAYERS

The dose enhancement calculations presented above
and reported previously were all performed for thick gold
layers. ''Thick'" here means thickness greater than or equal
to the maximum electron range in gold. While this thickness
is small (less than 15 um for photon energies less than
100 keV), gold metalization thicknesses in electronic
devices are often smaller than the equilibrium thickness.

It is important therefore to characterize dose enhancement
versus gold thickness. Shown in Figure 12 is the calculated
dose enhancement in silicon near gold for gold thicknesses
varying from zero to 80 pu-inches. The incident spectrum is
a continuous xX-ray spectrum with a mean energy of 55 keV.
The equilibrium gold thickness for this spectrum is 14 um
(550 u-inches); the dose enhancement for the equilibrium
thickness is 19. Note that the dose enhancement is greater
than 15 for gold layers as thin as 1 um (40 u-inches)

which is less than one-tenth of the equilibrium thickness.
This is because the mean electron penetration in gold is
less than 10 percent of the csda range at these electron

energies. The dose profiles in silicon are shown in Figure 13

for several gold layer thicknesses.
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3701 West Imperial Highway
Los Angeles, CA 90009
Attn: T B Yates

Rockwell International Ccrporation

Collins Divisions

400 Collins Road NE
Cedar Rapids, IA 52406
Attn: Denais Sutherland
Attn: Alan A Langenfeld
Attn: Mildred A Tlair

Sanders Associates, Inc.

95 Canal St

Nashua, NH 03060

Attn: Moe L Aitel NCA 1 3236

Science Applications, Inc.
P. 0. Box 2351

La Jolla, CA 92038

Attn: J Robert Beyster

Science Applications, Inc.
Huntsville Division

2109 W Clinton Ave

Suite 700

Huntsville, AL 35805
Atto: Noel R Byrn

Singer Corpany (Data Systems)
150 Totewa Road

Wayne, NJ 07470

Attn: Tech Info Center

Sperry Flight Systezs Division
Sperry Rand Corp.

P. O. Box 21111

Phoenix, AZ 85036

Attn: D Andrew Schow

Sperry Univac

vaivac Park, P. O, Box 3535
St. Paul, MN 55165

Attn: James A Inda/MS 41T25

Stanford Research Institute
333 Ravenswood Ave

Menlo Park, CA 94025

Attn: Philip J Dolan

Attn: Archur Lee Whitson

Stanford Research Institute
336 Wynn Drive, LW
Huntsville, AL 35805

Attn: MacPherson Morgan

Sundstrand Corp.
4751 Harrison Ave,
Rockford, IL 61101
Attn: Curtis B White

Systron-Donner Corp.
1G30 San iiiguel Road
Concord, CA 94518
Attn: Gordon B Dean
Attn: Harold D llorris

Texas Instruments, Inc.

P, 0, Bex 5474

Dellas, TX 75222

Attn: Donald J llaaus/¥MS 72

Tcxas Tech University

P. 0. Box 54C4 Korth College Station
Lubbock, TX 79417

Attn: Travis L Simpson

TLY Defense & Space Sys Group
Cur Space Park

Pedondo Deach, CA 90278

Zttn: Rchert M wWebb RI 2410
At:a: Tcch Info Ccater/S1920
Atia, 0 E Adams R1-2036

Lttn: R X Plebuch R1-2078

TPW Defense & Space Sys Group
San Pernardino Operations

P. 0. Dox 1310

San Berrnardino, CA 92402
Ltin: R Kitter

Unf{tcd Technologies Corp.
Hz=fiten Standord Divisicen
Lrajley Internaticnal Airport
Wi=mdsor Locks, CT 060069

Attn: Raymond G Giguere

VO'l;tht CO!’P .

P. 0, Box 5907

Dillas, TX 75222

Letr.e Technical Data Ctr
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ADDITIONAL DISTRTYBUTION LIST

Eanscom AFB, MA 01731

Attn: AFGL/SUSRP/Stop 30
Attn: AFGL/CC/Stop 30

Attn: AFGL/SUOL/Stop 20
Atta: ESD/XR/Stop 30

Attn: ESD/XR/Stop 30/D Brick
Attn: DCD/SATIN IV

Attu: MCAE/Lt Col D Sparks
Attn: ES/Stop 30

Attn: EE/Stop 30

Griffiss AFB, NY 13441
Attn: RADC/OC
attn: RADC/IS
attn: RADC/DC

Attn: RADC/IR
ittn: RADC/CA
Atta: RADC/TIR
Attn: RADC/DAP
Attn: RADC/TILD

¥axwell AFB, AL 36112
atton: AUL/LSE-67-342

75 Army Missile Com=and Lzbs
Zadstone Scicntific Information Ctr
S2dstone Arsenal, AL 35809

Attn: Chief, Docurents

SAMSO (YA/AT)

P. 0. Box 92360
worldway Postal Center
Les Angeles, CA 90009
dtta: Mr Hess

Saval Postgraduate School
Zuperintendent

vaaterey, CA 93940

irta: Library (Code 2124)

TS Dept. of Cormerce
Ioulder Laboratories
Joulder, CO 80302
tetn: Library/NCAA/ER]

TSAT Ac.demy
Zitrary
Txlcrado 80840
Attn: 80840
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Eglin AFB, FL 32542
Attn: ADTC/DLOSL

Scott AFB, IL 62225
Attn: AWS/DNTI/Stop 400

NASA Scientific & Technical
Information Facility

P. 0. Box 33

College Park, MD 20740

NASA Goddard Space Flight Center

Goddard Space Flight Center

Greenbelt, }D 20771

Attn: Technical Library, Code 252,
Bldg. 21

Naval Surface Weapons Center
White Oak Lab.

Silver Spring, D 20910

Attn: Library Code 730, RM 1-321

US Naval Missile Center
Point Mcgu, CA 92041
Attn: Tech. Library -~ Code 40322

KASA Jchneon Space Ceater
Attn: N6, Technical Litrary
Houston, TX 77058

NASA

Lewis Research Center
21000 Brookpark Road
Cleveland, OH 44135
Attn: Technical Library

Wright-Patterson AFB, OH 45433
Attn: AFAL/CA

Attn: AFIT/LD, 2ldg. 640, Area B
Attn: ASD/ASFR

Attn: ASD/FID/ETID

Defense Communications Engineering
Center

1860 Wichls Ave

Reston, VA 22(C90

Attn: Code R103R

Director, Technical Informaticn
DARPA

1400 Wilson Blvd.
Arlington, VA 22209
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Department of the Navy

800 North Quincy St

Arlington, VA 22217

Attn: ONRL Documents, Code 102IP

SAMSO

P. 0. Box 92960
Worldvay Postal Center
Los Angeles, CA 90006
Attn: Lt Col Staubs

US Army Electronics Command
Fort Monmouth, NJ 07703
Attn: AMSEL-GG-TD

Kirtland AFB MM 87117
Attn: AFWL/SUL Technical Library

US Naval Weapons Center
China Lake, CA 93555
Attn: Technical Library

Los Alamos Scientific Lab.
P. O. Box 1663

Los Alamos, NM 87544

Attn: Report Library

Hq DNA
Washington DC 20305
Attn: Technical Library

Secretary of the Air Force
Washington DC 20330
Attn: SAFRD

Scott AFB IL 62225
Attn: ETAC/CB/Stop 825

Andrews AFB
Washington DC 20334
Attn: AFSC/DLC

Aruy Material Cormand
Washington, DC 20315
Attn: AMCRD

NASA Langley Research Center
Langley Station

Hampton, VA 23365

Attn: Tociaical Library/MS 185

NASA
Washington DC 20546
Attn: Library (KSA-10)
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Andrews AFB
Washisgton, DC 20334
Attn: AFSC/DLS

AFOSR, Bldg 410
Bolling AFB, Washington DC 20332
Attn: CC

AFML
Wright Patterson AFB, OH 45433

The Pentagon

Room 3-D-139

Washington, DC 20301
Attn: ODDRSE-OSD (Library)

OiR (Library)
Washington, DC 20360

Defense Intelligence Agency
Washington, DC 20301
Attn: SO-3A

AFAL

Wright-Patterson AFB, OH 45433
Attn: WRA-1/Library

Attn: TSR-5/Technical Library

Advisory Group on Electron Devices
201 Varick St, 9th Floor
New York, NY 10014

White Sands Missile Range, NM §8002
Attn: STEWS-AD-L/Technical Library

University of New Mexico

Dept of Campus Security & Police
1821 Roma, NE

Albuquerque, NM 87106

Attn: D Neaman

Health and Safety Division

Oak Ridge National Laboratory
P.O. Box X

Oak Ridge Tenn. 37830

Attn: Dr. J. Ashley

AFWL/DYC/Fronk P. Cassisa
Kirtland AFI3 Albuquerque NN 87117

RADC/ESR/Stop 30/C. A. McCartney
Hanscom AFB MA 01731
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MISSION
of
Rome Avr Development Center

RADC plans and conducts research, exploratory and advanced
development programs in command, control, and communications
(c3) activities, and in the ¢ areas of information sciences
and intelligence. The principal technical mission areas

are communications, electromagnetic guidance and control,
surveillance of ground and aerospace objects, intelligence %
data collection and handling, information system technology, %

ionospheric propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and
compatibility.
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